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osttraumatic stress disorder (PTSD) is an illness of con-
P siderable prevalence, often characterized by high
morbidity, treatment resistance, and a chronic course. The
core symptoms of PTSD include persistent reexperiencing
of the traumatic event, avoidance of stimuli associated
with, the trauma, and autonomic hyperarousal. We pro-
pose several neurobiologic mechanisms that may account
for these primary symptoms of PTSD. Preclinical investi-
gations of the effects of stress on learning and memory
processes suggest that fear conditioning, behavioral sensi-
tization, and a failure of extinction may be important in the
persistence and reexperiencing of traumatic memories and
stressor sensitivity. The pathophysiology of PTSD may in-
volve dysfunction of several brain structures, particularly
the amygdala, locus coeruleus, and hippocampus, as well
as noradrenergic, dopamine, opiate, and corticotropin-
releasing factor neurochemical systems. Acutely, severe
psychological trauma results in the parallel activation of
these systems, producing an array of adaptive behavioral
and physiologic responses necessary for survival. In PTSD,
however, these acute responses appear to evolve into mal-
adaptive neurobiologic sequelae. These changes may re-
late to the chronicity of PTSD symptoms and the poor re-
sponse to treatment given long after the original trauma.
Future clinical investigations of the pathophysiology of
PTSD should focus on documenting neurobiologic dys-
functions in these patients with an eye toward developing
more effective therapeutic approaches that counteract the
acute responses to trauma.

I can’t get the memories out of my mind! The images come flood-
ing back in vivid detail, triggered by the most inconsequential
things, like a door slamming or the smell of stir-fried pork. Last
night [ went to bed, was having a good sleep for a change. Then
in the early morning a storm-front passed through and there was
a bolt of crackling thunder. I awoke instantly, frozen in fear. I am
right back in Vietnam, in the middle of the monsoon season at my
guard post. I am sure I'll get hit in the next volley and convinced
I will die. My hands are freezing, yet sweat pours from my entire
body. I feel each hair on the back of my neck standing on end. I
can’t catch my breath and my heart is pounding. I smell a damp
sulfur smell. Suddenly I see what's left of my buddy Troy, his
head on a bamboo platter, sent back to our camp by the Viet Cong.
Propaganda messages are stuffed between his clenched teeth. The
next bolt of lightning and clap of thunder makes me jump so much
that I fall to the floor .
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Perhaps there are no more vivid memories than those
that are stored in the brains of soldiers who have experi-
enced excruciatingly horrible combat situations. Witness
the above account of the 48-year-old Vietnam veteran who
cannot hear a clap of thunder, see an Oriental woman, or
touch a bamboo placemat without reexperiencing the sight
of his decapitated friend. Even though this occurred in a
faraway place more than 24 years ago, the memory is still
vivid in every detail and continues to produce a state of
hyperarousal and fear similar to that experienced that
fateful day.

Once called combat fatigue, war neurosis, or shell shock,
and now posttraumatic stress disorder (PTSD), it is clear
that intense trauma can produce vivid memories that can
last a lifetime and an increased sensitivity to many types
of stress long after the trauma. Although only recognized
as a distinct diagnostic entity in 1980, current data suggest
that PTSD is a disorder of considerable prevalence and
morbidity.?? Posttraumatic stress disorder may be a con-
sequence of other precipitants besides combat, including
sexual or physical trauma, but the resulting clinical picture
shares common symptomatic elements and, in many
patients, may become chronic.*

In light of the belated recognition of PTSD as a distinct
diagnostic entity, it is not surprising that there has been
comparatively little research directed toward understand-
ing the phenomenology, course, and neurobiology of
PTSD. Few investigations have been conducted to identify
vulnerability factors that predispose individuals exposed
to trauma to the subsequent development of PTSD. The
course of PTSD has not been well characterized, particu-
larly in relation to type, severity, and duration of trauma
exposure. Studies that focus on elucidating the pathophys
iologic changes that occur in the brain following severe
psychological trauma are only now being initiated.

The dearth of clinical neurobiologic research on PTSD
stands in contrast to a number of investigations of the be
havioral, biochemical, and neurophysiologic effects of fear
and stress in laboratory animals. These studies provide in=
sight into certain neural processes that either contribute to
the origin of PSTD or alternatively may be involved in the
maintenance of pathologic features.

Herein, we attempt to synthesize the findings of pre
clinical investigations of learning and memory processes
and the neurochemical effects of stress with clinical studs
ies of PTSD to develop a set of hypotheses related to the
pathogenesis of PTSD. These data suggest that the primad
ry symptoms of PTSD—the persistent reexperienﬂ“ngg
the traumatic event, avoidance of stimuli associatea wWiis
the trauma, and the symptoms of increased arousal—are
related to the neural mechanisms involved in fear condi
tioning, experimental extinction, and behavioral sensitiza
tion, as well as the altered function of specific brain region$
and neurochemical systems (Table 1).
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Table 1.—Neural Mechanisms Related to Primary Symptoms of Posttraumatic Stress Disorder (PTSD)*

Mechanism Description Systems

Neurochemical

Brain Regions Clinical Relevance

Animals exposed to emo-
tionally neutral stimulus
(conditioned stimulus
[CS] in conjunction with
an aversive stimulus (un-
conditioned stimulus
[UCS)) will subsequently
exhibit a conditioned
fear response (CR) to the
CS in the absence of the
ucCs

Fear conditioning
noradrenergic,
opiate

There is a reduction in the
CR when the CS is pre-
sented repeatedly in the
absence of the UCS; this
may result from learning
a new inhibitory memo-
ry that opposes the origi-
nal memory

Extinction

Sensitization Increase in response mag- Dopaminergic,
nitude following repeat-
ed administration of a
stimulus or presentation
of a different strong

stimulus

NMDA
receptors

NMDA receptors,

NMDA receptors

noradrenergic,

Fear conditioning may account for
the common clinical observation in
patients with PTSD that sensory
and cognitive stimuli associated
with or resembling the original
trauma elicit symptoms, including
anxiety, flashbacks, and hyper-
arousal; this results in the frequent
reexperiencing of the traumatic
event, a persistent avoidance of
such stimuli, and a compensatory
numbing of general responsiveness

Amygdala, locus
coeruleus, thala-
mus, hippocampus

A failure in extinction in PTSD may
relate to the persistence in recall-
ing traumatic memories

Sensory cortex,
amygdala

Sensitization may explain the
increased responsiveness of
patients with PTSD to stress both
related and unrelated to the origi-
nal trauma; dopaminergic and
noradrenergic dysfunction may
account for persistent symptoms of
increased arousal and the potenti-
ated responses to cocaine; alcohol,
opiates, and benzodiazepines may
be used to reduce symptoms asso-
ciated with fear conditioning and
sensitization

Nucleus accumbens,
striatum, hypothala-
mus, amygdala

*NMDA indicates N-methyl-D-aspartate.

NEURAL MECHANISMS OF LEARNING AND MEMORY:
RELEVANCE TO THE REEXPERIENCING
' SYMPTOMS OF PTSD

Fear Conditioning and Associative Memories

In patients with PTSD, vivid memories of the traumatic event,
autonomic arousal, and even flashbacks can be elicited by diverse
sensory and cognitive stimuli that have been associated with the
original trauma.’*"® Consequently, patients begin to avoid these
stimuli in their everyday life, or a numbing of general emotional
responsiveness occurs. Classic conditioning phenomena, which
are easily demonstrated in the laboratory, may explain some of
these observations. Animals-exposed to an emotionally neutral
visual or auditory conditioned stimuli in conjunction with an
aversive unconditioned stimulus will subsequently exhibit a
conditioned emotional (fear) reaction to the conditioned stimuli
in the absence of the unconditioned stimulus. These changes can
last for years in laboratory animals' and are used to infer that a
state of fear has been produced.” Hence, neural analysis of fear

“conditioning in animals can be used to examine the brain mech-

anisms involved in learning and remembering associations of
stimuli with traumatic events. T e

Several different paradigms have been employed to study the
neuroanatomic and neurochemical substrates of fear condition-
ing. These investigations have demonstrated that fear condition-
ing to visual and auditory stimuli can be mediated by subcortical
mechanisms, involving sensory pathways that project to the thal-
amus and amygdala.’ It has been suggested that emotional
memories established via thalamoamygdala pathways may be
relatively indelible.”

The fear-potentiated startle paradigm has been particularly
useful for delineation of the mechanisms of fear conditioning be-
cause fear is measured by a change in a simple reflex mediated
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by a defined neural pathway in the brain stem and spinal cord.
This test is sensitive to anxiolytic drugs and is disrupted by an-
atomic lesions known to affect conditioned fear.” It also may be
relevant to PTSD given that many patients with PTSD exhibit in-
creased startle responses,'® an abnormality generally not report-
ed in other psychiatric disorders. The central nucleus of the
amygdala plays a critical role in the fear-potentiated startle
response because it projects directly to one of the brain-stem nu-
clei necessary for startle,® and lesions of this pathway block the
ability of conditioned or unconditioned fear stimuli to elevate the
startle response.”2 :

The neurochemical systems involved in the regulation of the
fear-potentiated startle response include the noradrenergic,
dopaminergic, opiate, and corticotropin-releasing systems.' In
addition, N-methyl-D-aspartate (NMDA) antagonists infused into
the amygdala prevent the acquisition of fear-potentiated startle.”
These data indicate that an NMDA receptor-mediated process at
the level of the amygdala may be critical for development of fear
conditioning. In fact, recent studies have demonstrated that
long-term potentiation, an activity-dependent enhancement of
synaptic transmission,** can be produced in the amygdala mea-
sured in brain sections® or in vivo following stimulation of the
medial geniculate body.Z Previous work has shown that projec-
tions from the medial geniculate body to the amygdala may me-
diate the formation of memories established by pairing an acous-_
tic stimulus with a footshock.' These findings raise the possibility
that long-term potentiation in the amygdala may be related to the
encoding of the traumatic memories so vividly associated with
PTSD.V . :

Other behavioral paradigms indicate that noradrenergic neu-
ronal systems can be activated by neutral environmental stimuli
previously paired with shock. Neutral stimuli paired with shock
produce increases in brain norepinephrine (NE) metabolism and
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behavioral deficits similar to that elicited by the shock.??? In the
freely moving cat, the firing rate of cells in the locus coeruleus
(LC) can be increased by presenting a neutral acoustic stimulus
previously paired with an air puff to the whiskers, which also in-
creases firing and is aversive to the cat.* There is also-a body of
evidence indicating that an intact noradrenergic system may be
necessary for the acquisition of fear-conditioned responses.’'*?

A Possible Failure of Extinction in PTSD

It is possible that the continued ability of conditioned stimuli
to elicit traumatic memories and flashbacks in PTSD results from
a deficit in the neural mechanisms involved in response reduction
or extinction. Experimental extinction is defined as a loss of a
previously learned conditioned emotional response following re-
peated presentations of a conditioned fear stimulus in the absence
of a contiguous traumatic event. The form of learning that occurs
during extinction is still unclear. Although several different the-
oretical mechanisms have been proposed, two general classes of
theory have emerged.® Extinction has been explained in terms of
either an “erasure” of the original associations that led to the pro-
duction of the conditioned response™ or the acquisition of new
associations that compete with or “mask” the expression of the
still intact, response-producing associations.®® Both of these
hypothesize that new learning occurs as a result of nonreinforce-
ment but make very different predictions regarding the fate of the
conditioned response-producing associations. The erasure hy-
pothesis predicts that following nonreinforcement, the response-
producing associations no longer exist, and, therefore, the condi-
tioned response can no longer be performed. The masking
hypothesis predicts that the response-producing associations re-
main after nonreinforcement, and, therefore, if it were possible to
temporarily remove the masking associations, the conditioned
response could be performed.

Several lines of evidence suggest that the original associations
are intact following extinction. For example, Bouton and
colleagues®** have shown that the expression of extinction is
specific to the stimulus context in which nonreinforcement
occurred. Placing the animal into a context different from the one
in which nonreinforcement occurred results in a return of the
conditioned response. In addition, several experiments have
shown that the representation of the unconditioned stimulus fol-
lowing extinction is sufficient for reinstating extinguished re-
sponding to some preextinction level.*®** In rats, even 1 year after
extinction has occurred (ie, more than a third of the lifetime of the
animal), the aversive memory can be restored to its original mag-
nitude by a single training trial.*? This indicates the essentially
permanent nature of conditioned fear and the apparent fragility
of extinction. This phenomenon may help to explain the common
clinical observation that traumatic memories may remain dor-
mant for many years, only to be elicited by a subsequent stressor
or unexpectedly by a stimulus long ago associated with the orig-
inal trauma.®4 . |

These studies indicate that extinction does not erase the orig-
inal aversive memory but instead involves the learning of a new
memory that masks or inhibits the original one. It is important to
emphasize, however, that although extinction can be overcome,
in healthy animals extinction does result in a reduction of the
conditioned fear response. Using traditional measures of condi-
tioned fear, such as freezing, potentiated startle, or autonomic in-
dexes, nonreinforcement leads to a reduction in all of these mea-
sures. In healthy humans, many childhood fears become
extinguished and do not intrude daily in adulthood. In contrast,
patients with PTSD describe persistent traumatic memories that
do not extinguish. Thus, it is conceivable that patients with PTSD
have deficits in brain systems involved in extinction.

The amygdala is.not only involved in the acquisition and ex-
pression of conditioned fear responses but may also be necessary
for extinction. The NMDA antagonists infused into the amygdala
prevent the extinction of fear-potentiated startle.®® Thus, activity
in the amygdala during nonreinforced stimuli presentations may
be essential for extinction of conditioned fear stimuli. This may
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result from processes within the amygdala itself or via structures
that project to the amygdala (eg, hippocampus, prefrontal cortex,
or septal area) and have been implicated in extinction in several
experimental paradigms. Extinction of conditioned fear re-
sponses may represent an active suppression by the cortex of
subcortical neural circuits (thalamus or amygdala) that maintain
learned associations over long time periods.!¢4

Neural Mechanisms of Behavioral Sensitization and
Stress Sensitivity in PTSD

Many patients with PTSD experience chronic symptoms of in-
creased arousal, including insomnia, poor concentration, hyper-
vigilance, exaggerated startle response, and autonomic hyperre-
activity. Patients with PTSD demonstrate an increased
susceptibility to psychosocial stress in general. ¥ Several features
of behavioral sensitization suggest that this process may account
for the persistent symptoms of increased arousal and stress sen-
sitivity in PTSD.

Sensitization generally refers to the increase in response mag-
nitude that occurs following exposure to a stimulus. The response
being measured may be neurophysiologic (eg, spike magnitude),
behavioral (locomotor activity), or pharmacologic (extracellular
dopamine [DA] concentrations). The stimulus may be environ-
mental (eg, footshock) or pharmacologic (eg, amphetamine ad-
ministration). Moreover, cross-sensitization (augmented re-
sponse to a different stimulus than the original evoking stimulus)
may occur. Although sensitization is frequently considered as an
enhancement of response magnitude following repeated presen-
tation of stimuli, a critical variable also involves the time interval
between the initial stimulus and subsequent measurements.
Thus, a single stimulus can elicit behavioral sensitization, pro-
vided that sufficient time has elapsed between the initial presen-
tation and subsequent reexposure.*

Posttraumatic stress disorder may occur in response to a single
precipitating trauma or alternatively after repeated traumatic
events. The symptoms of PTSD persist long after the initial trau-
matic event(s); sensitization also appears to be an enduring phe- -
nomenon. Finally, the stimuli that evoke intrusive memories,
flashbacks, and related symptoms in patients with PTSD are of-
ten difficult to determine and may bear only a distant association
to the initial evoking stimulus. Such cross-sensitization to differ-
ent stimuli has been extensively documented and suggests a
common target structure or system through which the stimuli are
processed.

It should be noted, however, that cross-sensitization to differ-
ent stimuli is not always present. Moreover, the development of
a sensitized response to a particular challenge (eg, footshock) fol-. -
lowing long-term exposure to a different stimulus, such as cocaine - -
administration, may not be present in reverse order, ie, cross-.
sensitization may not occur if the challenge is cocaine and the::
chronic stressor is footshock.® The observation that there are lim- - §
itations to the stimuli to which cross-sensitization can occur is
similar to that observed in PTSD. Certain environmental stimuli
are particularly salient and evoke flashbacks in patients with
PTSD, whereas others do not. :

A large number of brain structures and neurochemical systems. -
have been implicated in the behavioral sensitization that occurs
in response to repeated stress or a single stressor of sufficient.-
magnitude. This is perhaps not surprising given that sensitization
can be demonstrated in individual cells. However, the mecha-
nisms of the development and expression of stress-induced serr,
sitization in mammals have been most extensively studied in cat
echolaminergic systems, particularly in the mesotelencep
dopaminergic systems. . :

Single or repeated exposure to a stressor potentiates the capac;
ity of a subsequent stressor to increase DA function in the fores
brain®'52 without apparently altering basal DA turnover.® The,
mechanisms involved in the development and expression of DA~
mediated behavioral sensitization appear to be different. The I*
tiation of DA-mediated sensitization is thought to involve
stimulation of D, DA receptors in response to increased soma
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Table 2.—Neurochemical Responses to Severe Stress Related to Primary Symptoms of Posttraumatic Stress
. , Disorder (PTSD) :

Neurochemical System Functional Alteration

Brain Regions Involved PTSD Symptoms

Noradrenergic Increased regional norepineph-
rine turnover, increased
responsiveness of locus coer-

uleus neurons

Dopamine Increased dopamine release in
frontal cortex and nucleus
accumbens, activation of
mesocortical dopamine

neurons

Opiate Increased endogenous opiate
release, decreased density of

B opiate receptors

Hypothalamic-pituitary-adrenal  Acutely elevated glucorticoid
levels, elevated corticotropin-

releasing factor

Locus coeruleus, hippocampus,

Prefrontal cortex, nucleus

Periageductal gray cerebral

Hippocampus, locus coeruleus,

Anxiety, fear, hypervigilance,
autonomic hyperarousal,
“fight or flight” readiness,
encoding of traumatic memo-
ries, facilitation of sensori-
motor responses

amygdala, hypothalamus,
cerebral cortex

accumbens

Analgesia, emotional blunting,
encoding of traumatic
memories

cortex, amygdala

Metabolic activation, learned
behavior responses, anxiety
and fear responses

amygdala

dendritic release of DA in the midbrain. The increased release of
DA from the dendrites of DA neurons may be due to an alteration
in y-aminobutyric acid (GABA) regulation of the DA neurons.*
The sensitization of Dy DA receptors may be an NMDA receptor-
dependent process.”® The relevant cellular and transsynaptic ef-
fects of Dy receptor stimulation remain to be clarified.

The expression of behavioral sensitization requires that a suf-
ficient period of time elapse (on the order of several days) for key
intercellular and intracellular responses to be mounted that ulti-
mately result in augmented DA function. This may be analogous
to the situation in patients with PTSD, in whom a certain interval
is interposed between the initial traumatic event and the subse-
quent appearance of core PTSD symptoms. The increase in effec-
tive DA function appears largely attributable to increased release
of the amine, although some degree of enhanced receptor sensi-
tivity in the forebrain terminal fields may be present. The
augmentation of DA release may occur in response to changes in
key afferents to the DA neurons or through reduced autoinhib-
itory tone.® :

Behavioral sensitization to stress may also involve alter-
ations in noradrenergic function. Limited shock exposure that
does not increase NE utilization in control rats does increase
NE release in animals previously exposed to the stressor.%
Moreover, changes in noradrenergic function in animals sub-
jected to long-term shock require lower shock currents (de-
creased stressor intensity) than required under acute condi-
tions.”” An in vivo study observed augmented extracellular NE
concentrations in the hippocampus, whereas ex vivo measure-
ments of noradrenergic metabolites in response to chronic
stress indicated a sensitized response in the hypothalamus but
not hippocampus.® It is not clear to what degree this reflects
differences in metabolic disposition of NE in the two regions,
as opposed to actual differences in sensitization processes.
Nonetheless, regional specificity in biochemical indexes of the
expression of sensitization may be important. A recent in vivo
dialysis investigation demonstrated stress-induced sensitiza—
tion of NE release in the medial prefrontal cortex.” . :

Neurochemical Effect's;o‘f Stress and
-~ the Primary Symptoms of PTSD _; .

Stress produces profound alterations in multiple neurotrans-
mitter systems. A comprehensive review of these effects is beyond
the scope of this review. In the following section, we evaluate the
effects of stress on the neurotransmitters and neuropeptides that
have been the most extensively studied and appear related to the
neural mechanisms of fear conditioning and sensitization. Exam-
ination of the preclinical data concerning the neurochemical sub-
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strates of the stress response provide a context to consider clin-
ical investigations of PTSD (Table 2).

Noradrenergic System

Stressful stimuli of many types produce marked increases in
brain noradrenergic function. Stress produces regional selec-
tive increases in NE turnover in the LC, limbic regions (hypo-
thalamus, hippocampus, and amygdala), and cerebral cortex. It
has recently been demonstrated that immobilization stress,
footshock stress, tail pinch stress, and conditioned fear in-
crease noradrenergic metabolism in the hypothalamus and
amygdala.®40!

The responsiveness of the noradrenergic system to stress is
consistent with the notion that the elevated sense of fear or anx-
iety associated with stress may be a critical factor.?%¢” Neurons
in the LC are activated in association with fear and anxiety
states,*° and the limbic and cortical regions innervated by the LC
are those thought to be involved in the elaboration of adaptive
responses to stress.”® A particularly dramatic example was the re-
cent demonstration that LC-NE neurons in freely moving cats
were activated twofold to threefold by confrontation with either
a dog or an aggressive cat, although exposure to other novel
stimuli (such as a nonaggressive cat) did not increase the firing_
rate.” : i o ST

A series of investigations have shown that certain stressors
elicit increased responsiveness of LC neurons to excitatory stim-’
ulation? These changes have been associated with ay’
adrenergic autoreceptor subsensitivity, similar to that observed
by a,-receptor blockade. In fact, antagonism of a receptors with
idazoxan hydrochloride or yohimbine increases the response of
LC neurons to excitatory stimuli without altering their baseline
firing rate. Chronic blockade of opiate, 5-hydroxytryptamine, and
GABA receptors does not appear to influence LC responsive-
ness.”>” Consistent with these findings, acute cold restraint stress
results in decreased density of arreceptors in the hippocampus’
and amygdala.™ The stress-induced increase in NE turnover is
also associated with'a decrease in postsynaptic beta receptor
density.‘f-’f_;n' S R T : -

. e hieroo:

- . Clinical Implications

The findings that stress increases noradrenergic function and
that fear conditioning and behavioral sensitization are related to
alterations in noradrenergic activity may have important impli-
cations for understanding the pathophysiology and course of
PTSD (Tables 1 and 2). In particular, many of the chronic symp-
toms experienced by patients with PTSD, such as panic attacks,
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insomnia, startle, and autonomic hyperarousal, are characteristic
of increased noradrenergic function.””

Stress-induced increases in noradrenergic function may be re-
lated to frequent abuse of alcohol, opiates, and benzodiazepines
by patients with PTSD in attempts to relieve their symptoms.
Acute alcohol administration has been reported to reduce stress-
induced increases in NE turnover in the amygdala and the LC, but
not in the hypothalamus, hippocampus, and cerebral cortex.®
Opiates, such as morphine, decrease stress-induced increases in
NE release in the amygdala, hippocampus, hypothalamus, thal-
amus, and midbrain.®" Benzodiazepine drugs, including diaz-
epam, attenuate stress-induced increases in NE release in the
hypothalamus, hippocampus, cerebral cortex, and the LC
region.®!

Pathophysiologic Studies

Most of the early clinical investigations of the pathophysiology
of PTSD identified a relationship between severe stress exposure,
increased peripheral sympathetic nervous system activity, and
conditioned physiologic and emotional responses.®?3 Since the
early 1980s, a series of well-designed psychophysiologic studies
have been conducted that have further documented heightened
autonomic or sympathetic nervous system arousal in combat
veterans with chronic PTSD. Combat veterans with PTSD have
been shown to have higher resting mean heart rate and systolic
blood pressure, as well as greater increases in heart rate; when
exposed to visual and auditory combat-related stimuli compared
with combat veterans without PTSD,® patients with generalized
anxiety disorder,® or healthy subjects.®® Furthermore, several
psychophysiologic studies have found hyperreactive responses to
combat-associated stimuli but not to other stressful non—combat-
related stimuli.” Because central noradrenergic (LC) and periph-
eral sympathetic systems may function in concert,” these data are
consistent with the hypothesis that noradrenergic hyperreactivi-
ty in patients with PTSD may be associated with the conditioned
or sensitized responses to specific traumatic stimuli. Studies
evaluating the efficacy of psychotherapeutic techniques empha-
sizing desensitization to reduce hyperarousal responses to stim-
uli associated with the psychological trauma represent a current
focus of investigation.”%

Neuroendocrine studies and investigations of peripheral cate-
cholamine receptor systems have also provided evidence of dys-
regulated peripheral sympathetic nervous system activity in
PTSD.* Two of three studies have found significantly elevated
24-hour urine NE excretion in combat veterans with PTSD com-,
pared with healthy subjects or patients with schizophrenia or’
major depression.”” Consistent with this observation, it has been_
reported that the density of platelet a,-adrenergic receptors is re-
duced in PTSD, perhaps reflecting adaptive “downregulation” in
response to long-standing elevated levels of circulating endoge—
nous catecholamines.®

Noradrenergic function has also been probed by deterrmmng
the behavioral, biochemical, and cardiovascular responses to the
ar-adrenergic receptor antagonist yohimbine.””” As predicted
from the preclinical studies reviewed above, combat veterans
with PTSD have exhibited enhanced behavioral, biochemical, and
cardiovascular responses to yohimbine. The yohimbine-induced
increase in plasma 3—methoxy—4—hydroxyphenolglycol was more.
than twice as great in patients with PTSD as in healthy subjects.
Approximately - 60% - and . 40% of the patients .experienced
yohimbine-induced panic ‘attacks and flashbacks, “respectively,’
that could not be accounted for by comorbid panic disorder.” The’
incidence of yohimbine-induced panic attacks in patients ‘with
PTSD approximates that observed in patients with panic disor-
der.®® [n contrast, yohimbine rarely induces panic attacks in
healthy subjects or in patients with schizophrenia, major depres-
sion, generalized anxiety disorder, or obsesswe—compulsxve dis-
order.”™ These findings suggest that PTSD and panic disorder
may have similar pathophysiologic dysfunctions in the regulation
of noradrenergic function. However, the causes of the two
syndromes may differ, with panic disorder more associated with
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genetic factors and PTSD with severe environmental trauma. The
treatment implications of these observations remain to be estab-
lished but suggest that specific PTSD symptoms (eg, anxiety, .
panic attacks, flashbacks, and autonomic hyperarousal) may be
particularly responsive to drugs that reduce noradrenergic func--

tion, such as clonidine hydrochloride.?®'% ]t should be noted,’
however, that patients with panic disorder and those with PTSD"

have different therapeutic responses to tricyclic compounds. Pa-
tients with panic disorder derive great benefit from these drugs,
whereas those with PTSD have more modest responses.!®

DOPAMINERGIC SYSTEM

Acute stress increases DA release and metabolism in a number
of specific brain areas.'®'"® However, the DA innervation of the
medial prefrontal cortex appears to be particularly vulnerable to

stress; sufficiently low-intensity stress (such as that associated .

with conditioned fear) or sufficiently brief exposure to stress in-

creases DA release and metabolism in the prefrontal cortex in the -

absence of overt changes in other mesotelencephalic DA re-
gions.!"¢!18 Stress can enhance DA release and metabolism in oth-
er areas receiving DA innervation, provided that greater intensi-
ty or longer-duration stress is used.'*!" Thus, the mesoprefrontal
cortical DA innervation is preferentially activated by stress com-
pared with mesolimbic and nigrostriatal systems,'"”!"¥ and the
mesolimbic DA innervation appears to be more sensitive to stress
than the striatal DA innervation.!'®!"71* The responsiveness of the
mesoprefrontal DA system is heterogeneous within the region,'?
reflecting the presence of multiple cortical innervations embed-
ded in this region.'?

The sensitivity of the mesoprefrontal cortical DA systems to
stress appear to be attributable to stress increasing the firing rate
of midbrain DA neurons that project to the prefrontal cor-
tex.!1211611712 The enhanced DA responsiveness of subcortical DA
systems may reflect in large part changes in release of the amine
occurring via presynaptic regulation.!’>116122

The stress-induced increases in mesoprefrontal cortical DA
neurons appear to be regulated by a number of chemically distinct
afferent systems."® For example, NMDA and opiate receptor
blockade in the ventral tegmental area, the source of the cortical
DA innervation, prevent stress-induced activation of the cortical
DA system.!?' Similarly, immunoneutralization of substance P
in the ventral tegmental area prevents the cortical DA response
to stress.'® In addition, stimulation of GABAs and benzodiaz-

‘epine receptors in the ventral tegmental area attenuate the stress-

elicited activation of DA neurotransmission.!'s.

-.The forebrain DA innervations show an augmented response
to repeated stress as well as repeated administration of psycho-
stimulants, such as cocaine and amphetamines. Previous expo-
sure to stress increases the subsequent locomotor response, sub-
served by DA systems of the nucleus accumbens, to cocaine
challenge >*'#12 Thus, stress and psychoshmulants can, under
certain conditions, cross-sensitize.

e Cllmcal lmpllcatlons

Stress-mduced hyperactivity of central DA systems may be
linked to specific PTSD symptoms, including generalized anxiety,-
panic attacks, hypervigilance, and exaggerated startle.*” The rela--
tionship between DA hyperactivity and hypemgﬂance is sup-
ported by the observations that amphetamines and cocaine com--
monly produce hypervigilance and paranoid behavior.** Because

. chronic stress and cocaine or amphetamine administration have”

similar effects on DA function, patients with PTSD may have po-
tentiated behavioral response to these drugs and may be more
vulnerable to the development of ] paranma or psychosxs after ad-
ministration of these agents (Table 1). :

The DA innervations of different forebram 51tes have been as-
sociated with different functions. The prefrontal cortical DA sys-
tems appear to be involved in a number of higher-level functions,
including attention and “working memory.”? The stress-
induced activation of the prefrontal cortical DA system has been
proposed to be involved in the acquisition (but not execution) of
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coping responses elaborated in response to stress."'*2'% In par-
ticular, the prefrontal cortical DA system may be involved in vig-
ilance associated with an individual’s initial response to stress
and may regulate the activity of corticifugal neurons projecting to
anumber of sites (eg, the amygdala, entorhinal cortex, or LC) that
may be directly involved in the execution of appropriate coping
responses.

If excessive responsiveness of dopaminergic systems contrib-
utes to the symptoms of PTSD, then drugs that reduce DA func-
:ion would be expected to alleviate certain symptoms, especially
hypervigilance and paranoia. However, prospective studies have
not been performed to test this possibility. The only published
data, to our knowledge, is a retrospective report of eight patients
with chronic PTSD treated with neuroleptics; three (37.5%) of
these patients had a moderate to good response to neuroleptic
therapy. Neuroleptics are occasionally prescribed for . patients
with PTSD with psychotic symptoms or severe impulsivity.!*1%

Endogenous Opiate System

One of the primary behavioral effects of uncontrollable stress
is analgesia, which results from the release of endogenous
opiates.'® Substantial analgesia is observed following uncontrol-
lable but not controllable stress™'* and also is seen following
presentation of neutral stimuli previously paired with aversive
stimuli.'*® There is also evidence that sensitization occurs because
reexposure to less intense shock in rats previously exposed to
uncontrollable shock also results in analgesia.'!

These effects are likely to be mediated, in part, by a stress-
induced release of endogenous opiates in the brain stem because
the analgesia is blocked by naltrexone hydrochloride' %! and
shows cross-tolerance to morphine analgesia.'® Moreover, opiate
peptide levels are elevated after acute uncontrollable shock, "%
and uncontrollable, but not controllable, shock decreases the
density of mu opiate receptors.'*

Clinical Implications

In nontraumatized human populations, naloxone has been
shown to reverse the stress-induced analgesia observed after
noxious footshock."® Similarly, in Vietnam veterans with PTSD,
naloxone has been reported to reverse the analgesia induced by
stressful combat films.!* These findings are consistent with the
development of opioid-mediated stress-induced analgesia in
PTSD and with the report that wounded combatants during
World War I required lower doses of narcotics than civilians with
less severe injuries.’” o

It is unknown whether the effects of uncontrollable stress on
endogenous opiates are related to the core clinical symptoms as-
sociated with PTSD. However, it has been hypothesized that in
PTSD traumatic reexposure causes an increase in endogenous
opiate levels that might explain compulsive reexposure to trau-
matic events or “addiction” to trauma." This hypothesis has not
been supported by psychophysiologic laboratory studies in
which combeat films fail to evoke euphoric feelings or emotional
responses of calm and control. Instead, the films evoke a numb-
ing or relative blunting of emotional responses. Clinical trials of
the opiate antagonist naltrexone may help clarify the involvement
of endogenous opiates in PTSD.. BRSNS

A role for endogenous opiates in PTSD is consistent with the
clinical observations that opiates are a preferred substance of
abuse among many traumatized veterans. The use of opiates by
traumatized veterans may represent an attempt to self-medicate
or to compensate for dysregulation of the noradrenergic and/or
endogenous opiate systems.. Opiate withdrawal, on the other
hand, is associated with an increase in central noradrenergic ac-
tivity as well as an increase in PTSD symptoms.'*

HYPOTHALAMIC-PITUITARY-ADRENAL (HPA) AXIS

Unequivocal evidence shows that acute stress of many types
produces increases in corticotropin (ACTH) and corticosterone
levels in laboratory animals."’ The mechanism responsible for
transient stress-induced hyperadrenocorticism and feedback re-
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sistance may involve a downregulation of glucocorticoid
receptors.'®1>? High glucocorticoid levels (such as those elicited
by acute stress) decrease the number of hippocampal glucocorti-
coid receptors, resulting in increased corticortrosterone secretion
and feedback resistance. Following stress termination, when glu-
cocorticoid levels decrease, receptor numbers are increased and
feedback sensitivity normalizes.!s*'>

The effects of chronic stress on ACTH and corticosterone
secretion vary depending on the experimental paradigm.' It has
been reported that an adaptation to chronic stress may occur, re-
sulting in decreased plasma ACTH and corticosterone levels
compared with levels following a single stressor.’*>'* However,
other investigations have revealed enhanced corticosterone se-
cretion after chronic stressor regimens.'*1¢ There is also evidence
that the experience of prior stress may result in augmented cor-
ticosterone responses to a subsequent stress exposure.'®!¢ It is
not known which factors determine whether adaptation or sen-
sitization of glucocorticoid activity will occur following chronic
stress.! )

Some of the behavioral deficits produced by stress may be re-
lated to effects on HPA axis function. Adrenalectomy has been
demonstrated to increase the frequency of behavioral deficits in-
duced by uncontrollable stress; this effect is reversed by cortico-
sterone administration.'®® Data from our study and others suggest
that stress-induced corticosterone release may be involved in the
central processing of stress-related phenomena and the subse-
quent learned behavioral responses.

However, there is also evidence that the learning deficits pro-
duced by uncontrollable stress may be related to neurotoxic
effects of very elevated glucocorticoid levels on hippocampal
neurons. The most convincing support for this assertion comes
from two recent investigations in vervet monkeys. In one study,
vervet monkeys who died spontaneously after experiencing sus-
tained social stress had marked and preferential hippocampal
neuronal degeneration.'” In a subsequent investigation, gluco-
corticoid administration in vervet monkeys produced similar
damage in terms of cell numbers and morphologic features in the
hippocampus.'”!

Corticotropin-Releasing Factor (CRF)

Considerable data now indicate that CRF, the hypothalarnié

hypophysiotropic hormone that activates the pituitary-adrenal
axis, is also a neurotransmitter in extrahypothalamic brain sites.'”?
In laboratory animals, CRF has anxiogenic-like properties when
injected centrally.'” Furthermore, CRF appears to play an impor--
tant role in the neuroendocrine, autonomic, and behavioral

responses to stress.”+17 Severe stressors produce increases in CRF. £

concentrations in the amygdala, hippocampus, and LC.78. st

The brain sites mediating the CRF responses to stress have not
been established. However, there is accumulating data that these
effects of CRF may be produced by interactions with LC norad-
renergic neurons; intracerebral ventricular infusion of CRF in-.
creases NE turnover in several forebrain areas,”” CRF in a dose-
dependent fashion increases the firing rate of LC-NE neurons,'”
and a stressor that activates NE neurons markedly increases CRF
concentrations in the LC.77¢ Moreover, it has recently been dem-
onstrated that infusion of CRF into the LC has anxiogenic activ-
ity and produces marked increases in levels of the NE metabolite
3,4-dihydroxy phenylglycol in forebrain areas, such as.the
amygdala and hypothalamus.'” Bilateral lesions of the amygdala
selectively decrease CRF concentrations in the LC.*® The anxi-

olytic benzodiazepine alprazolam selectively decreases CRF con-:

centrations in the LC.'® These data suggest that under stressful
conditions, CRF and NE regions, like the LC, may participate in
a mutually reinforcing feedback loop.

Also, CRF may have important effects on DA neuronal func-
tion. Intraventricular administration of the peptide increases DA
metabolism in the prefrontal cortex in a manner similar to
stress.'® It is unclear, however, whether the mechanism through
which the prefrontal cortex DA system is activated is the same as
that subserving the stress-induced effect.'®
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Neurosteroids

A group of steroid metabolites that are formed in ‘th_e brain ha}ve
recently been demonstrated to potentiate GABA-elicited chloride
flux.®1% Although the precise nature of steroid binding to the
GABA, receptor complex remains unclear, the neurosteroids are
thought to recognize a site on the GABA-benzodiazepine/
chloride ionophore complex that is distinct from both the benzo-
diazepine and barbiturate binding sites.””'* Although neuro-
steroids do not bind to the benzodiazepine site, their ability to
enhance GABA-elicited chloride ion flux suggests that these
compounds may have anxiolytic actions. Consistent with this
suggestion is the observation that both brain and plasma concen-
trations of the neurosteroid metabolites of progesterone and
deoxycorticosterone (3a-hydroxy-5a-pregnane-20-one [allopreg-
nanolone] and 3a,21-dihydroxy-5a-pregnane-20-one [alloTH-
DOC], respectively) increase after exposure to swim stress.”® In
addition, systemic administration of alloTHDOC has been shown
to result in anxiolytic effects at doses lower than those required
to induce sedation.'® Recently, intraventricular administration of
alloTHDOC has been shown to antagonize the stress-induced in-
crease in prefrontal cortical DA metabolism at doses that do not
result in sedation.!!

Clinical Implications

There is abundant clinical evidence that acute trauma can pro-
duce profound increases in glucocorticoid levels.'”? However, it is
not known whether the magnitude of these increases is sufficient
to produce hippocampal neuronal cell loss, as demonstrated in
the nonhuman primate studies. Magnetic resonance imaging
studies capable of measuring hippocampal volume in patients
with PTSD may be a useful method to evaluate this possibility.

There are comparatively few data on HPA axis function in pa-
tients with chronic PTSD. One research group,'®'™ but not
another,' has found reduced urinary free cortisol levels in
patients with PTSD compared with healthy subjects and patients
with other psychiatric disorders. Consistent with a decrease in
urinary free cortisol concentrations is the finding that lymphocyte
glucocorticoid receptors may be increased in PTSD.™

Several investigations have been conducted to evaluate HPA
system regulatory mechanisms in PTSD. In a small sample of pa-
tients, the ACTH response to CRF was reported to be blunted in
the presence of normal plasma cortisol levels.'” Furthermore,
preliminary evidence shows that some patients with PTSD may
be overly sensitive to the ability of dexamethasone to suppress
cortisol.”® Considered together, these results suggest that certain
central inhibitory -mechanisms suppressing CRF and ACTH
function may be increased in chronic PTSD, resulting in decreased
basal cortisol level. This is consistent with preclinical investiga-
tions demonstrating adaptive HPA responses to chronic stress.

Despite the above findings, there is also evidence that substan-
tial cortisol level increases can be elicited from patients with PTSD
in response to intense emotional stimuli and pharmacologic
agents.”? [t is possible that patients with PTSD may show exag-
gerated responses to novel stressors. Thus, more investigation is
needed to elucidate HPA axis function in acute and chronic PTSD
in relation to alterations in basal activity and regulatory mecha-
nisms following a variety :of behavioral and pharmacologic
challenges. 307~ vic s L L e : eemmos
% As noted above, neurosteroids may serve as endogenous anx-
iolytic agents. Although there are no data concerning alterations
in plasma or cerebrospinal fluid levels of either alloTHDOC or
allopregnanalone in patients with PTSD, it is possible that the
generation: of ‘neurosteroids may be altered in PTSD.. Future

studies should be devoted to the assessment of this possibility. -

- CONCLUDING COMMENTS o

Preclinical investigations indicate that the neural mech-
anisms of fear conditioning, extinction, and sensitization
may be operative in PTSD. Moreover, strong evidence
suggests that noradrenergic, dopaminergic, opiate, and
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HPA neuronal systems and the LC, amygdala, hypothal-
amus, hippocampus, and prefrontal cortex are involved in
these processes and are important mediators of the stress
response.

The acute behavioral responses produced by the paral-" ;

lel activation of these brain structures and neurochemical
systems by psychological and physical trauma represent
adaptive responses critical for survival in a dangerous en-
vironment. For example, autonomic hyperarousal and hy-
pervigilence facilitate appropriate rapid behavioral reac-
tions to threat. The analgesia and blunted emotional
responses following trauma produced by increased release
of endogenous opioids may increase the chances of sur-
vival after serious injury. The trauma-induced increases in
cortisol level may promote the metabolic activation neces-
sary for sustained physical demands required to avoid
further injury.

Although initially of benefit, there are long-term nega-
tive consequences of the acute neurobiologic responses to
stress that may lead to persistent changes in synaptic
transmission in limbic and cortical brain sites. A change in
excitability of amygdaloid neurons produced by sensitiza-
tion or fear conditioning would produce changes in a va-
riety of hypothalamic and brain-stem targets that are
involved in the somatic and autonomic signs of fear and
anxiety.?! A reduced activation threshold of the LC would
result in increased NE release at LC projection sites,
including the amygdala, hippocampus, and the cerebral
cortex.1#1%-01 Similarly, the function of certain distinct
mesocortical DA neurons is elevated by fear conditioning
and sensitization. Each of these changes in neuronal activ-
ity could account for the chronic anxiety symptoms and
potentiated stressor sensitivity in patients with PTSD.¥#

Emerging evidence suggests learning and memory dif-
ficulties in traumatized patients.???” Stress-induced im-
pairment in long-term potentiation, mediated in part by
excitatory amino acid, noradrenergic, and opioid receptor
systems, may be responsible for the development of learn-
ing deficits postulated or observed in PTSD. Because
extinction appears to involve an active learning process,
deficits in learning may impair normal extinction in
patients with PTSD, leading to the abnormal persistence of
emotional memories. - .. - CLotnee . agnil

TRAUMATIC REMEMBRANCE AND THE AMYGDALA .-
Perhaps the most characteristic feature of PTSD is that

the memories of traumatic experiences remain indelible for. -

decades and are easily reawakened by all sorts of stimuli
and stressors. The strength of traumatic memories relates,
in part, to the degree to which certain neuromodulatory
systems are activated by the traumatic experience.”®??
Evidence from experimental and clinical investigations
suggests that memory processes remain susceptible ‘to

"‘modulating influences -after information has been-ac-

quired.”! Locus coeruleus activation by electrical stimula-
tion or a,-adrenergic receptor antagonists enhance mem-
gt P! 8

. ory retrieval???®® - The ‘'memory-enhancing - effects * of
" increased noradrenergic. activity may be . mediated by -

B-noradrenergic. receptors within the amygdaloid .com-
plex.2%2%212 Thus, some of the acute neurobiologic re-
sponses to trauma may facilitate the encoding of traumat-
ic memories." T

In patients with PTSD, simple sensory phenomena, such
as specific smells, sounds, and visions, circumstantially
related to the traumatic event persistently produce a
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A neural model for traumatic remembrance and correlated behaviors.
The original trauma produces a parallel activation of key brain regions,
including the locus coeruleus, the ventral tegmental area, and the
amygdala and associated norepinephrine, dopamine, opioid, and
corticotropin-releasing factor systems. Studies have shown that these
neurochemical activations produce adaptive behavioral responses and
facilitate the encoding of the traumatic memories, possibly at the level
of the amygdala. As described in the text, neural mechanisms of fear
conditioning, extinction, and sensitization involve these brain regions
and neurochemical systems and contribute to the persistence of
traumatic memories and many other posttraumnatic stress disorder
symptoms. The amygdala may play a particularly key role in these pro-
cesses because of its demonstrated involvement in fear conditioning and
extinction and its projections to numerous brain regions (noted in
parentheses) and may mediate the associated symptoms evoked by
flashbacks and intrusive memories. Posttraumatic stress disorder symp-
toms are listed with the hypothesized associated brain structures. NE in-
dicates norepinephrine; DA, dopamine.

recrudescence of traumatic memories and flashbacks. The
brain regions mediating these processes include the
amygdala, LC, hippocampus, and sensory cortex. Most of
the evidence points to the amygdala as particularly im-
portant in the conditioning and extinction of sensory and
cognitive associations to the original trauma and subse-
quent activation of traumatic memories. NMDA receptors
on the amygdala are involved in these processes because
NMDA antagonists applied to the amygdala and NMDA
lesions of the amygdala prevent the development of fear-
conditioned responses and the extinction of fear-
potentiated startle.

The suggestion that the amygdala functions to attach
fearful or anxious affect to neutral stimuli associated with
trauma is supported by data linking the amygdala to anx-
iety and fear behaviors. Partial or complete destruction of
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Table 3.—Therapeutic Implications of a
Psychobiologic Model of Posttraumatic Stress Disorder
(PTSD)

1. Early treatment intervention may prevent the negative
consequences of fear conditioning, sensitization, and other
neurochemical responses to acute stress; symptoms of
PTSD may respond to medications that counteract the
acute stress response when these drugs are prescribed
shortly after the traumatic stress.

2. A rational, targeted pharmacotherapy for PTSD may be
identified by the development of drugs that act on key
brain structures altered by stress and involved in fear
conditioning, behavioral sensitization, and extinction (ie,
locus coeruleus, amygdala, and hippocampus).

3. Psychotherapies designed to prevent or reverse the effects
of fear conditioning may be most effective; cognitive-
behavioral therapies using exposure techniques to
extinguish the effects of conditioned stimuli should be
evaluated.

4. Medications and psychotherapy effective for acute PTSD
may be less effective or ineffective for chronic PTSD
because of altered neurobiologic state and the
development of secondary symptoms, such as depression,
guilt, and hostility.

the amygdala causes monkeys to become less fearful than
usual. 2

Theamygdala has direct and extensive connections to all
of the sensory systems in the cortex. It is likely that many
of the memories associated with traumatic events are
eventually stored in the cortex.?’® Thus, the functional in-
terchange between the sensory cortices, where memories
of each sense may be stored, and the amygdala may be
critical for the ability of specific sensory input to elicit
traumatic memories. In addition, the highly correlated set
of behaviors associated with traumatic memories may re-
sult from activation of the amygdala. It projects to a vari-
ety of target areas that themselves are critical for the
development of these behaviors®'® (Figure).

IMPLICATIONS FOR PATHOPHYSIOLOGIC AND
TREATMENT STUDIES OF PTSD

Many of the hypotheses described above can be tested
in clinical research studies and may have therapeutic rel-
evance (Table 3). Most of the neurobiologic research has
been conducted in patients with chronic PTSD. Investiga-
tions are required involving patients with acute PTSD.
Vulnerability factors that result in the development of
acute and chronic PTSD in traumatized individuals need
to be identified. Clinical investigations designed to assess
the neurobiologic mechanisms associated with fear condi-
tioning and sensitization are indicated. With the use of
imagery,?” negative affective slides,””® or threat of shock,"
it is possible to measure fear-potentiated startle in healthy
controls as well as in patients with PTSD. Such procedures
may provide an objective method to evaluate whether pa-
tients with PTSD have deficits in extinction or a lack of
sensitivity to conditioned inhibitors. If so, then an under-
standing of the basic mechanisms in animals that mediate
extinction or a reduction in fear by conditioned inhibitors
may have direct relevance to PTSD.

A potentially fruitful therapeutic approach is to devel-
op drugs that specifically block conditioned fear. Consid-
erable data suggest that sensory and cognitive associations
produce a state of fear or anxiety via direct anatomic pro-
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jections from cortical and subcortical brain structures to the
amygdala (Figure). Drugs that act on receptors located on
amygdaloid neurons themselves (eg, benzodiazepines)
may be effective in reducing both conditioned fear and
generalized anxiety, because both are assumed to be relat-
ed to activation of the amygdala. However, under condi-
tions of extreme stress increases in amygdala function (eg,
by vivid traumatic memories), these drugs may simply be
incapable of preventing stimulation of amygdaloid neu-
rons, except at hypnotic doses. On the other hand, drugs
that act selectively on the sensory pathways afferent to the
amygdala (eg, by presynaptically decreasing the release of
transmitters connecting cortical or subcortical afferents to
the amygdala) could be much more effective in blocking
conditioned fear, one of the core symptoms of PTSD. In
fact, depending on the specificity of these afferent connec-
tions and the specificity of the drugs, selective decreases in
conditioned fear might be achieved without concomitant
effects on alertness and motivation. Drugs that alter func-
tion in brain regions to which the amygdala projects may
be effective in blocking other specific signs and symptoms
of PTSD. Thus, the proposed relationships among dys-
function of specific brain structures and neurochemical
systems and clinical symptoms raise the possibility of dis-
covering a rational, targeted pharmacotherapy for PTSD.
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Some of the concepts discussed in this article have been published
by the authors in the chapter “Neurobiological Mechanisms of Post
Traumatic Stress Disorder.” In: Tasman A, Riba MR, eds. Review of
Psychiatry, Vol 11. Washington, DC: American Psychiatric Press;
1992:347-367.
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